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We study the response of a classical Hamiltonian system to a weak perturbation in the regime
where the dynamics is mixing, with the purpose of critically examining both the foundation of
the Kubo linear response theory (LRT) and van Kampen’s well known objections to LRT [Phys.
Norv. 5, 279 (1971)]. Although the exactness of LRT for short times is not surprising, we prove
that for the class of model studied here the LRT must also become accurate in the limit of long
times, even for macroscopically large external perturbations. Hence, if the LRT breaks down, the
breakdown occurs in the region of intermediate times. We also show that, for a given system, if
any macroscopic linear response exists, it must coincide with Kubo LRT; thus, if a generic system
responds nonlinearly to an external perturbation, this nonlinear response is observable only in an
intermediate-time range. Numerical calculations carried out on some model systems with only a few

degrees of freedom support these arguments.

PACS number(s): 05.40.+j, 05.60.+w, 05.70.Ln, 05.45.+b

I. INTRODUCTION

The theoretical difficulties with the treatment of non-
equilibrium processes are widely reduced by the adoption
of a linear response formalism [1]. Under the assump-
tion that the macroscopic variables of interest are only
slightly moved from their equilibrium conditions, it is
possible to express their mean values as a linear func-
tion of the external disturbances, thereby reducing the
original problem to the determination of the static sus-
ceptibility. Let us consider, for instance, a macroscopic
variable of interest, B. In general, this is a function of
many microscopic variables; and we are interested, for
instance, in its average (statistical) value, (B). If we as-
sume that the average (B)o in absence of the external
field is zero, then after the time ¢t = 0, the time at which
the constant field of intensity K is switched on, we can
write for the average (B)k

(B)k = Kxa(t) + O(K?), (1.1)
where x g(t) is the susceptibility for the macroscopic vari-
able B. In a recent letter, Chernov et al. [2] provided the
first derivation of Ohm’s law based on a deterministic
mechanical model. They proved the validity of linear re-
sponse theory (LRT) in the context of a Lorentz model.
They noted that this result stands in contrast to the ob-
jections raised by van Kampen [3] against the Kubo for-
mulation of LRT. However, in their letter the authors
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do not directly address the criticism of van Kampen, but
more simply derive the susceptibility for their model, and
do not provide a theoretical explanation of why the LRT
in practice works so well. This long-standing controversy
between Kubo and van Kampen [3] is to date without
solution in a general context.

Let us briefly review this controversy. To derive the
linear relations discussed above, it is tempting to assume
that the microscopic trajectories respond linearly to an
external perturbation. By virtue of this hypothesis, it
is relatively easy to derive the linear behavior of macro-
scopic variables from a microscopic picture; this is the
essence of the approach followed by Kubo [1]. Actu-
ally Kubo used a perturbative treatment of the Liouville
equation

% (t) = (Lo + KL1) p(t),

(1.2)
where p(t) is the distribution function of the system,
Lo the unperturbed Liouvillian and £; the perturbation;
however, due to the basic equivalence between the Hamil-
ton and the Liouville description, it seems [3] that the
Kubo approach is essentially equivalent to deriving the
linear macroscopic properties from the linearization of
the classical trajectories.

The approach of Kubo is appealing, since it leads to
expressions for the susceptibility in terms of time-integral
of correlation functions:
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t
xSubo(y) = / (Bo(r)L1)odr, (1.3)
0
in which
Bo(t) =e%5T™B (1.4)

is the unperturbed evolution of B, leading to elegant the-
oretical predictions, which have been found to date to be
always in remarkable agreement with experimental re-
sults [4]. Yet, van Kampen [3] pointed out that macro-
scopic linearity cannot have the same source as micro-
scopic linearity. Due to the highly unstable character
of the microscopic trajectories, the macroscopic linearity
could derive from the microscopic one only in the limiting
case of perturbations of virtually vanishing intensity. A
rough estimate of the time ¢ spent to observe the system
of interest, the intensity K of the external perturbation
field, the Lyapunov exponent of the system A, and the
energy per degree of freedom ¢, in order to observe linear
response of the individual trajectories, is given by

K [e"t - 1] <L wv/e, (1.5)

where w is a characteristic frequency of the system. It is
clear that if t is a macroscopic time while £ = 1/\ is a
microscopic time scale, then the intensity of the external
perturbation K, satisfying Eq. (1.5), must become ex-
tremely small. On the basis of Eq. (1.5), we also expect
linear response even to macroscopic external perturba-
tions as long as t is in the range of microscopic times,
ie., fort St

The reply of Kubo and coworkers to the criticism of
van Kampen has more recently been that the perturba-
tion of the single, and unstable, trajectory is not equiv-
alent to the perturbation treatment of the classical Li-
ouville equation. They make this explicit statement [1]:
“[...] It is true that the characteristics of the Liouville
equation are the phase trajectories and so the Liouville
equation and the Hamilton equation of motion are equiv-
alent in this sense. However, the limitation of the class
of distribution functions on which the Liouville operator
operates makes them nonequivalent. Unfortunately it is
not easy to formulate the mathematical condition for this
statement. But we realize that the instabilities of the tra-
jectories are in fact the cause of mixing, favoring rather
than unfavoring the stability of distribution functions.
[..]”

Herein we show that, in spite of the van Kampen crit-
icism, for the class of mixing hamiltonian systems with
a finite volume in phase space, the susceptibility given
by Eq. (1.3) is correct not only for microscopic times less
than %, but also for very large times and macroscopic in-
tensities of the external field, despite a possible discrep-
ancy between Kubo LRT and the true response in the
region of intermediate times. In this region of interme-
diate times we have that in practice not only Eq. (1.3)
for the susceptibility does not seem to work, but also
that we can hardly define a susceptibility, given that the
system does not respond linearly, not even for external
fields small enough to yield linear response at small and
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large times. We are led to conclude that very likely van
Kampen’s argument about a difference between macro-
scopic and microscopic linear response is not correct: in
our case, the system responds linearly on a macroscopic
scale as long as the microscopic linear response theory
(Kubo LRT) is correct. In the spirit of Ref. [5], we then
prove that under the only assumption that the system
responds linearly on a macroscopic scale at any time ¢, it
follows that the susceptibility for the system is indistin-
guishable from the one obtained via Kubo’s LRT.

The outline of the paper is as follows. In Sec. II we
derive an exact expression for the stationary (asymptot-
ically large times) susceptibility using only geometric ar-
guments. In Sec. III we prove that in the large times
limit the Kubo expression for the susceptibility coincides
with the exact geometric one evaluated in Sec. II and
that if a linear response exists at any times, then its pre-
dictions must coincide with those of the Kubo LRT. This
leads us to predict that in the intermediate time region,
if the Kubo LRT turned out to be invalid, the system
would indeed respond nonlinearly, and no LRT would be
applicable. This prediction is supported by the results of
computer calculations, which are illustrated in Sec. IV.
In Sec. V, we draw some conclusions.

II. HAMILTONIAN CHAOTIC SYSTEMS:
EXISTENCE OF A LRT BASED
ON “GEOMETRY”

Let us consider a system driven by the Hamiltonian:

H =Ho+ KHj, (2.1)

where Hj is the unperturbed system Hamiltonian. The
external perturbation has the form

KH; = KAf(t), (2.2)
where A is a given function of the phase-space coordi-
nates. The direction of this force is defined by the unit
vector i = — VA, where V is a gradient operator in
the phase-space coordinate. The quantity f(t) is a time-
dependent function that specifies how the external field
depends on time. We restrict our attention to the case
where f(t) is the unit step function and to a spatial dis-
placement A = z so that

H= Hy, t<0
- H0+K$,t20

(2.3)
is the Hamiltonian of the system of interest.

We consider systems for which H generates a mixing
chaotic dynamics. At times ¢ = 0, we assume that the
phase-space distribution function of the system is the un-
perturbed equilibrium one peqo(z,v,y, w) satisfying the
equation

LOpeq,O (:E, vy, W) = 0’ (2'4)

where v is the momentum conjugate to the = coordi-
nate and y, w refer, respectively, to the canonically con-
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jugate coordinates and momenta of the rest of the system.
Here the Liouville operator for the unperturbed system
is given by the Poisson brackets:

[.0' = {Ho, '}PB .

In the chaotic regime, for fixed energy E the only solution
of Eq. (2.4) is the microcanonical distribution [6]

(2.5)

§(E — Ho)

T A(®) (2.6)

pi,o(ma vy, W) =

where A¢(E) is the normalization of the unperturbed mi-
crocanonical distribution on the energy manifold in phase
space

Ao(E) = /5(E — Hg)dzdvdydw. (2.7)
We put an F superscript on the distribution to denote a
fized energy E.

At time t = 0 the external field is turned on and after

some transient time the system reaches an equilibrium
distribution peq,x satisfying the equation

cOpeq,K(:l:v vY, W) + K‘CIpeq,K(mv Y, W) = 0’ (28)
where
%)
Lr={slpp=75 (2.9)

is the perturbed part of the Liouville operator. For fixed
energy E we have again [6] that the solution of Eq. (2.8)
is the microcanonical distribution, where now the Hamil-
tonian is the perturbed one:

8(E — Hy — Kz)

IRE (2.10)

peEq,K(mv vy, W) =
with

Ax(E) = / §(E — Ho — Kz)dzdvdydw.  (2.11)

The microcanonical distribution function is by inspec-
tion a smooth function of K and can be expanded in
power series

pi,K(zﬂvs y,W) = pi,o(zav’ Y7w)
+KpE | (z,0,y,w) + O(K?). (2.12)

We obtain pg,l(m,v,y,w) directly from the exact “per-
J

o
peq,l(xa vy, W) = a?peq,K(zv Y, W)
K=0

turbed” equilibrium distribution of Eq. (2.10), which
reads

d
E _ E
peq,l(l"v’yaw) = a—K—peq,K(:l:,v,y,w) ‘o

T 0
= — —&§(E —
Ao(E) 8E (B — Ho)
L 5B H) L)
[40(E)]? O oE e

(2.13)

where the K derivative is replaced by one with respect
to E.

Up to now we have considered equilibrium distribu-
tions at fixed energy E, throughout the application of
the external field, but actually the switching on of the
perturbation at ¢t = 0 triggers a transition from a prob-
ability distribution at a fixed value of the energy to one
with a distribution of energy values. The exact change
in energy of each single system of our Gibbs realization
depends on the value of the coordinate = at the moment
of application of the perturbation. In fact, if at times
t = 0~ a particular system were in the phase-space point
Zo, Vo, Y0, Wo, the energy would take the value

E™ =H0($0,v0’)'07wo)- (214)

Immediately after the application of the external con-
stant force, i.e., at times ¢ = 07 the value of the energy
becomes

E+ = Ho(Eo,Uo,yo,Wo) + KICO =FE + K:Bo. (215)

Thus, the distribution after the application of the exter-
nal force is no longer the microcanonical distribution of
Eq. (2.10), but a collection of microcanonical distribu-
tions with different energies F each one corresponding to
different zo, i.e.,

peq,K(:c,v,y,w) =/Pi,o($ovvo,YO,Wo)

XpeEqTI\{(zﬂ (z,v,y, w)dzodvodyodwo,
(2.16)
where
z (E+ Kzo— Hy— Kz
Pt (z,y,y, W) = ( L ) @an)

Although the resulting distribution is not longer micro-
canonical, it is still smooth and this makes it legitimate
to adopt a Taylor series expansion with respect to the
strength K of the perturbation. We find the following
first-order contribution

o
= / pE, o(%o,v0, Yo, Wo) {ﬁpﬁl,o(z, v,y,w)To + p& 1 (z,v,y, W)} dzodvodyoedwo

1]
= (z)eq,oé—Epﬁbo(z,v,y,w) + pi,l(z,v,y,w),

(2.18)

where pﬁl’l(z,v,y,w) is given by Eq. (2.13) [note that in Eq. (2.13) the energy is kept constant]. Assuming that
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(Z)eq,0 = 0, we obtain

peq,l(a:,v,y,w) = peEq,l(zavvva)- (219)

This means that in the simplified case where (z)eq,0 = 0, the first-order contribution to the perturbed distribution is
identical to the first-order perturbation of the microcanonical distribution, a property which makes it easy to derive
the “geometric” expression for the stationary susceptibility. Indeed, using Eq. (2.19) as well as Eq. (2.13), we obtain

the following expression for the susceptibility

x= [ peas(e,0,y, w)edadvdydw

1 0 .
_ e— ——— —_ d _
A0(E) 9E /6(E Hy)x a:dvdydw+/6(E Hy)zdzdvdydw

1 o 2 (.’B)eq’o o
= — ——-—AO(E) 55 {(x )eq,OAO(E)] + AO(E) ﬁ
from which we have
1 7} 2
X =~ A(E)9E [(2%)eq,040(E)] - (2.21)

It is now easy to extend this result to the case when
the unperturbed mean value of the variable of interest is
not zero. The susceptibility is invariant by spatial trans-
lation; then, to obtain the analytical expression for this
case, we can simply replace (x2)eq0 in Eq. (2.21) with
the variance ((€%)eq,0 — (Z)2, o), obtaining

X =~ 157 35 [(#)ea0 ~ (@il a(B)]. (222

Equation (2.22) is an exact expression for the suscep-
tibility, based only on geometric considerations, which
circumvents the dynamical arguments of van Kampen
criticism. Thus, we have demonstrated the existence of
a LRT based on the geometric constraints of the system
dynamics in phase space. To be able to say that the
system response is linear, however, we should prove that
the perturbative contributions following the first one in
a power series in the external field intensity K are small
compared to the first one. We can expand the exact equi-
librium distribution in power series in K [see Eq. (2.12)],
we have for the average value of

(:E)eq,K = KX + Ksﬁ + O(Ks)v

having assumed that the unperturbed odd moments
of the variable z identically vanish [consistently with
Eq. (2.21)].

The susceptibility x is the one in Eq. (2.21), and ap-
plying the same analysis which led to (2.21) to Eq. (2.23)
yields

(2.23)

1 83

A= " 6Ao(E) OE3

[($4)eq,0AO] . (2.24)

We can roughly estimate the contribution 8. Defining
€ = E/n where n is the number of degrees of freedom,
assuming that Ap =~ €™ (which is certainly correct for
large n), we have that the Eq. (2.23) can be kept to first
order when

(@)ea0/€ > (2*)eq0K?(n — 1)(n — 2)/6n’¢%, (2.25)

_L 90 .
[A0(E)]2 6E /%%
[(€)eq,040(E)], (2.20)
[
which leads to the condition on K
K? < 6€%(z?)/(z*). (2.26)

Finally, note that the susceptibility of Eq. (2.21) is
evaluated using the stationary equilibrium distribution
and it does not explicitly involve the time taken by
the observation t, which entered Eq. (1.5), but only the
strength of the external field K. Furthermore, recalling
that the energy per degree of freedom € is a macroscopic
quantity (it coincides with the macroscopic temperature,
for canonically distributed systems), it follows that the
condition on K given by Eq. (2.26) is a condition on fields
of macroscopic intensity.

III. ONLY ONE LRT

In Sec. II we derived an expression for the susceptibility
that relied only on the hypothesis of randomization due
to chaos and, related to this, we made the assumption
that for each value of K the system reaches a unique [6]
state of equilibrium, denoted by peq,x(z,v,y,w). Thus
our system, after a certain macroscopic time ¢* (a time
much larger than the microscopic time ) must be so close
to the perturbed equilibrium state as to satisfy the time
independent Liouville equation

(['0 +KLI) Peq,K(-’l”U, y,W) =0. (31)

If K satisfies Eq. (2.26), we can safely use a perturbation
approach to derive from Eq. (3.1) the following first-order
perturbation equation for the equilibrium distribution

L:Opeq,l(zvvayaw) + LIPeq,o(z,U, y’W) = 0 (32)
Formally the solution of Eq. (3.2) reads
1
peq,l(zav7y,w) = _L_OLIpeq,O(ma'U:)'aw)’ (33)

and this first-order perturbed distribution gives the fol-
lowing formal expression for the stationary susceptibility,
for a generic observable B of the system,

XB = —/B%L,peq,o(a:,v,y,w)da:dvdydw. (3.4)
0
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For microcanonical systems the formal expression of
Eq. (3.4) must be identical to that of Eq. (2.22).

We now prove that for times t going to infinity
Eq. (1.3) (Kubo prediction for the time-dependent sus-
ceptibility) converges to the “exact” prediction of (3.4)
for the stationary susceptibility.

Inverting the phase space and time integration
(Fubini-Tonelli theorem), and explicitly evaluating the
time integration in Eq. (1.3), we get

1
Xléubo(t) — _/BZ_[:Ipeq,o(z,U,y,w)dzdvdydw
0

1
eq,0

Due to the mixing property of the system, the second
term on the right hand side of this equation vanishes
(we assume that (B)eqo = 0). In the long times limit
Eq. (3.5) becomes identical to Eq. (3.4). It is ironic that
chaos, which is expected to invalidate the Kubo LRT due
to the phenomenon of chaos-induced trajectory instabil-
ity, actually turns out to be the key ingredient to ensure
the validity of Kubo prediction.

In the microcanonical case the Kubo susceptibility
reads

(3.5)

¢ 8 6(E — Ho)
Kubo ;) _ Lot — 0
X (t) /d:cdvdydwz/o e o Ao(E) T

1
= - dyd
Ao(E) /d:cdv ydwzx

XA v(—T)dT%é(E— Ho)

1 0 .
= Ao(E) E—E {[(.’E:E(t))eq’o - (:l: )eq,O] AO(E)} y

(3.6)

and, since the system is mixing, in the long times limit
the correlation function goes to (z)2, ;. As expected, in
this limit it coincides with the exact “geometric” result
Eq. (2.22).

We are left with the following picture. There are two
time ranges, a microscopic one (t < ) and a macroscopic
one (t > t*), for which the system responds linearly to
an external perturbation of macroscopic intensities, and
the Kubo LRT is applicable. An open question is what
happens in the intermediate time region (t < t < t*):
Kubo LRT would be, in general, violated.

We now show that if a linear response theory (even
a “phenomenological” one) exists, then it must coin-
cide with Kubo LRT. For instance, this implies that the
macroscopic susceptibility derived in [5] coincides with
Kubo LRT. For the proof, we change the perspective
within which the external perturbation is treated. In par-
ticular, we assume that we are working at times larger
than zero, i.e., that the external perturbation is already
switched on. The corresponding correct equilibrium dis-
tribution is obviously peq,x, and we shall consider the
relaxation to this distribution from the initial nonequi-
librium distribution peq,0. In other words, we are here
studying an Onsager process: the distribution peq,0 now
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specifies the initial condition, shifted by an amount pro-
portional to K (for small K) with respect to the equi-
librium distribution which is now given by peq,x. It is
clear that now the dynamics is a pure free relaxation (no
external perturbation), where the effect of the external
field enters only via the definition of the initial conditions
att =0.

We enforce the hypothesis that the system responds
linearly. The only possible meaning of this is that the
relaxation process is “macroscopically” linear in the ini-
tial (¢t = 0) perturbation of the equilibrium distribution:
there is indeed no other possible meaning of linearity with
respect to K. Let us introduce a macroscopic probabil-
ity P(t) associated in some way to the microscopic one,
for example, via a coarse graining of the space phase.
Irrespectively of the actual approach followed for the
derivation of P(t), we assume that it is this probabil-
ity which leads to the macroscopically linear behavior of
the system. Notice that the microscopic equilibrium dis-
tribution peq,x and the initial one peq,0 are smooth on a
macroscopic scale. Thus, we have

P(00) = Peq = Peq,K» (3.7

and

P(0) = peq,0 = Peq + KP1(0) + O(K?). (3.8)
On the other hand, we have already shown that the two
stationary distributions peq,0 and peq,x are, for small K,
close to each other, i.e.,

Peq,0 = Peq,K — erq,l + O(Kz)» (3'9)
where peq,1 is given by Eq. (3.3); hence, from Egs. (3.7),
(3.8), and (3.9) we obtain

Pi(0) = —peq1. (3.10)

We now introduce the generator for the time translation,
U(t), defined as

P(t) = Peq + KU(t)P1(0) + O(K?). (3.11)
In general the operator U(t) is not the microscopic Li-
ouvillian operator but it guides the time evolution of
the distribution resulting in the macroscopic probabil-
ity P(t). With the help of Egs. (3.10) and (3.11) we can
write

(B)(t) = (B)eq + Kg(t) + O(K?), (3.12)

where

g(t) = — / BU(t) peq, 1dzdvdydw. (3.13)

Equation (3.12) describes the decay process of the aver-
age value of B, a function of the microscopic variables.
This decay is given by the time behavior of the function
g(t), which is a correlation function. In fact, using the
explicit form of peq,; given in Eq. (3.3), we have
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1
9(t) = —/BU(t)L—OEIpeq,odmdvdydw

—<B(t)£ioc,> +O(K). (3.14)

Notice that g(t) must be multiplied by K to obtain the
first-order contribution to the average value of B, then it
must be computed at zero order in K and we can discard
the contribution O(K) in Eq. (3.14).

Now we go back to the original problem, i.e., the cal-
culation of the susceptibility to an external perturbation.
We express the susceptibility in terms of the relaxation
of B given by (3.12), (3.13), and (3.14):

(B)(#) —(B)(0) _
K

xp(t) = lim —g(0) +g(¢)

- / B%E,peq,o(m, v,y, w)dzdvdydw
0

+<B(t)21;£1>eq.

We stress that in the derivation of the susceptibility in
Eq. (3.15) we did not linearize the microscopic Liouvil-
lian. We simply enforced the hypothesis of the validity of
some (macroscopic) LRT, which implies that Eq. (3.11)
holds true, i.e., that an initial small perturbation from
equilibrium, linear in K, leads, in the subsequent time
evolution, to a deviation of the macroscopic probability
from the equilibrium, which is still linear in K.

Comparing Eq. (3.15) with the Kubo result [Eq. (3.5)],
it is clear that the difference is that in the former case
the correlation function is computed in the presence of
the external field, whereas in the latter case the exter-
nal field is absent. However, both the susceptibility and
g(t) ought to be computed at order zero in K. It fol-
lows that at zeroth order in K the susceptibility given by
Eq. (3.15) coincides with the one obtained following the
Kubo approach. We conclude that

(i) If the system responds linearly then it must do so
as per the Kubo LRT prediction.

(ii) For Hamiltonian mixing chaotic systems, a break-
down of a LRT can only take place for “intermediate”
times.

(iii) If Kubo LRT breaks down, it implies that no other
theory based on a linear response will be applicable.

We should appreciate that the result Eq. (3.6) has not
been found previously, and it is formally different from
the standard one obtained by Kubo which involves the
time integral of the mixed correlation function (zv(t))eq,0
instead of Eq. (1.3); they are nevertheless equivalent be-
cause the only difference is the exchange of the time and
phase-space integrations, an exchange which can be car-
ried out for the case at hand. There is yet another dif-
ference, i.e., that in the standard case [1] the canonical
distribution is used, whereas here we used the micro-
canonical distribution. However, having assumed that
(Z)eq,0 = 0, using a canonical equilibrium distribution
and repeating the algebra leading to Eq. (3.6), we find
for the susceptibility the expression

Xean °(t) = Xcan > (00) [1 = 0(®)],

(3.15)

(3.16)
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where
X0 (00) = _(x’:;_}qvo (3.17)
and
o(t) = ——-—(”(z(zt)»q:" (3.18)

If we took the limit of an infinite number of degrees of
freedom for our microcanonical system we would expect
the susceptibility given by Eq. (3.6) to coincide with the
one given by Eq. (3.16), which was obtained working with
the canonical distribution. Rewriting Eq. (3.6)

XKubo(t) KubO(oo){l —p(t) — 6 ‘P(t)

x [5% In (A(E)(zz)eq,o)] _1}, (3.19)

where
XK (o0) = ___I__i(A(E) (2)eq,0) (3-20)
A(E) 8E °"’
and noticing that
. o
dim 55 @ e =0
ll’m i‘I’(t) =0,
lim 55 In A(E) = (kgT) ™", (3:21)

we find that, in the limit n — oo, Eq. (3.19) coincides
with Eq. (3.16), which in turn is equivalent to the stan-
dard Kubo formula for the susceptibility. We generally
term “Kubo susceptibility” the different expressions ob-
tained for the susceptibility, starting from a perturbation
of the microscopic Liouvillian: this is so because all these
apparently different expressions are equivalent.

IV. NUMERICAL SIMULATIONS
AND COMPARISON WITH THE THEORY

To check our conjectures, we have numerically inte-
grated the equations of motion for two different Hamil-
tonian systems. The first system we have studied numer-
ically is described by the Hamiltonian

v? w?
Hy = my— + ma— + g(myz + may). (4.1)

2 2
The two particles of masses m; and m,, and coordinates
= and y move along the vertical axis under the influence
of gravity, and elastically collide between themselves and
the ground. We have the constraint 0 < z < y. Under
the additional condition that m, < m;, it was proved [7]
that the system is mixing in the whole accessible phase
space and then is ergodic, even when an additional term
Kz is added to the Hamiltonian: the mixing character
of the dynamics of this system implies that it belongs to
the class that we consider in this paper and thus, using
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the result of the previous sections, we conclude that the
LRT should give an exact value for the susceptibility in
the long time limit. We have from Eq. (2.22)

x = 22k (4.2)
9(mqy + mg)zgz' '

We set ¢ =9.8, m; =2, my; =1, and FE = 2.0.

The numerical simulations consisted in generating a
microcanonical distribution over the unperturbed phase
space, obtained following the unperturbed trajectory and
sampling it at times larger than the inverse of the Lya-
punov exponent of the system. Then, for each initial
condition obtained in this way, we applied the perturba-
tion and followed the subsequent evolution: finally, the
average (z(t))k is computed averaging over the different
initial conditions. For very long times we obtained the
static susceptibility that is plotted as squares in Fig. 1.
The agreement with the theoretical prediction (solid line)
of Eq. (4.2) is very good. Because of the very simple
geometry of the manifold at given energy, it is easy to
analytically evaluate the exact (not first order in K) sta-
tionary response of this system ({z)x — (z)o), for any
value of the intensity K of the external perturbation.
The comparison between theory and numerical simula-
tions, carried out at £ = 2.0 is shown in Fig. 2. The
dashed line is the Kubo LRT (first order in K). We
can easily estimate that the K values allowed to be in
the linear regime is K <« g(m; + m3)/2 ~ 15. Note
that the satisfactory agreement between the LRT and
the numerical result shown by both figures refer to the
stationary regime of the response, namely, the long-time
regime, while, according to van Kampen’s argument, the
LRT, being a microscopic treatment of chaotic processes,
should hold only in a very restricted short-time regime.

We then turned to the time-dependent case: again we
set E = 2.0. For the theoretical susceptibility we used
Eq. (3.6), with (zxz(t))eq,0 obtained from the simulations
done without any external perturbation and for values
of E very close to E = 2.0. For the numerical simula-
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FIG. 1. The stationary susceptibility x as a function of the
energy E for the Hamiltonian of Eq. (4.1). The squares are
the result of numerical simulations, the solid line refers to the
theoretical prediction of Eq. (4.2). See text for the value of
the parameters chosen in the simulations.
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FIG. 2. The stationary response as a function of the exter-
nal perturbation K for the Hamiltonian of Eq. (4.1). The
squares are the result of numerical simulations, the solid
line refers to the exact (nonlinear) theoretical prediction, the
dashed line is Kubo LRT. See text for the value of the param-
eters chosen in the simulations.

tions, we followed the same procedure illustrated above,
with the only obvious difference that we stored the whole
time dependent quantity (x(t)) x for comparison with the
theory. The result obtained for two different values of
K is plotted together with the theoretical predictions in
Fig. 3. Note the very good agreement between simula-
tions and theory in the range of small times. Then, as
time increases, we observe a clear departure between the
numerical x(t) and the theoretical prediction based on
Eq. (3.6). Also, the breakdown between theory and sim-
ulation happens at smaller times for the larger K value
considered. In the region of intermediate times the nu-
merical x(t) obtained for different values of K are fairly
distinct and their shape is only roughly similar to the
theoretical prediction. In the region of large times, as
seen in Fig. 1, we would expect the theory and the nu-
merical simulations to agree well. The residual small dis-
crepancy (around four percent for K = 0.6) can totally
be accounted for using the first nonlinear correction to
Kubo LRT. It is clear that, as expected, at intermediate
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FIG. 3. Time-dependent susceptibility for the Hamiltonian
of Eq. (4.1). See figure for a key to the different curves. The
curves relative to different K are the result of numerical sim-
ulations.
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times the discrepancy between numerical simulations and
theoretical prediction is much larger than a few percents,
lending weight to the conjecture that the Kubo LRT is
indeed broken in this time range; in turn this implies that
no LRT is applicable, and this is confirmed by the dis-
crepancy between the two numerical simulations shown,
which again differ, in the intermediate-time region, by
more than a few percents.
The system we studied next is given by the Hamilto-
nian
2 2
Ho=mlv-2—+m2w7+2(22—1)2+gy(zz—-1) + 292
(4.3)

with the choice m; = m; = 1. In this case, we are not
aware of a proof that the system is mixing, and hence
that its equilibrium distribution is microcanonical. How-
ever, studying the unperturbed dynamics we found that
for energies F between 0.5 and 2 the microcanonical dis-
tribution is satisfactorily realized. A full discussion of
the static susceptibility for a wide range of energies has
been reported elsewhere [8]. The simulations we present
here were done with E = 1.25, which guarantees that
we are fairly reasonably in the middle of the region for
which the LRT should apply. The result of the numerical
simulations for three different values of K and the theo-
retical predictions are plotted in Fig. 4. It is clear that,
as expected, the agreement between numerics and the-
ory is extremely good in the region of small times; then
a region of poor agreement follows; and finally, for larger
times, we again have good agreement between simula-
tions and theory for all values of K considered. A closer
look at the region of intermediate times is particularly
interesting: it should be clear that the numerical simu-
lations do not approach the Kubo formula uniformly as
K is decreased. The effect is striking (see the region of
times between 30 and 70): looking at the susceptibility
for K = 0.10 and 0.02 one would be led to conclude that
we are indeed approaching the limit given by the Kubo
expression. And yet, as K is further reduced, the nu-
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-x(t)
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FIG. 4. Time-dependent susceptibility for the Hamiltonian
of Eq. (4.3). See figure for a key to the different curves. The
curves relative to different K are the result of numerical sim-
ulations.
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FIG. 5. A short-times region blow up from Fig. 4. Symbols
are the difference between the susceptibility obtained from
numerical simulations and the Kubo expression, for different
values of K (see figure). The solid line is an exponential func-
tion, with exponent equal to the largest Lyapunov exponent
of the system.

merical susceptibility “swings” to the other side of the
Kubo expression, implying that no convergence has been
achieved. Note that the K values used here are macro-
scopic, because K /(z2) is comparable to the energy per
degree of freedom, and hence much larger than the K
value allowed following the van Kampen argument (see
Introduction). We made sure, however, that Eq. (2.26)
was satisfied.

Interesting conclusions are reached by magnifying the
region of small times. We plot in Fig. 5 the difference be-
tween the numerical susceptibilities obtained for different
values of K and the Kubo prediction for the susceptibil-
ity. We see that the departure from the Kubo prediction
follows an exponential function, and, much more remark-
ably, that the exponent of the best fitting exponential
function is very close to the largest Lyapunov exponent
for the system, strongly confirming that the breakdown
of the LRT at short times is due to the chaotic dynamics,
in agreement with van Kampen argument against Kubo
LRT.

V. CONCLUSIONS

We have studied the class of mixing systems with a
finite volume in phase space. We have shown that for
large times these systems respond linearly to external
perturbations of macroscopic amplitudes. As expected,
for large enough amplitudes of the external perturbation
this linearity breaks down; we characterized analytically
this breakdown, and showed that the perturbations al-
lowed are far larger (macroscopic as opposed to micro-
scopic) than what could be expected, for instance, using
the van Kampen argument. For external perturbation
amplitudes for which the system of interest responds lin-
early, the stationary susceptibility that we obtain for-
mally coincides with the one derived by Kubo (LRT).

Intuitively, the reason why for long times the system
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responds linearly is that the Liouville distribution be-
comes indistinguishable from a coarse grained macro-
scopic probability due to the mixing dynamics in the
phase space. Note that a fundamental role is played by
the finiteness of the volume taken by our systems in phase
space. This equivalence is not appropriate for interme-
diate times, because the fragmentation of the Liouville
density induced by mixing dynamics is not yet “com-
plete.”

For these systems, the van Kampen scenario is still ap-
propriate to describe the short-times region: the Kubo
LRT is applicable for relatively short times (microscopic
ones, for sizeable external fields), due to the linearity
of the response of the individual trajectories; then the
chaotic dynamics takes over, and the linear response
breaks down.

In the region of intermediate times we cannot prove
that the LRT of Kubo should be applicable; indeed, the
numerical simulations in this region do not agree with the
Kubo LRT. However, it is most interesting to note that,
in this region of disagreement, the numerical susceptibil-
ity seems not to converge as the external field amplitude
is reduced. We are led to the conclusion that the sys-
tem does not seem to respond linearly, even for relatively
small perturbations.

We have then proved that this behavior could be ex-
pected: we have shown that there is no distinction be-
tween macroscopic linearity and microscopic linearity. In
other words, if a system responds linearly in a macro-
scopic sense, then the macroscopic susceptibility coin-

cides with the microscopic one, and, vice versa, so that
if Kubo LRT breaks down, no macroscopic linearity is to
be expected.

What would be the effect of increasing the number of
degrees of freedom on the size of the intermediate-time
region where the Kubo LRT is invalid, and on the devia-
tions from the Kubo results? The numerical calculations
which led us to the discovery of the breakdown of the
Kubo LRT are unfortunately limited to the case of a sys-
tem with only two degrees of freedom. However, on the
basis of the physical interpretation given above, we argue
that the response of the system becomes more and more
linear increasing the number of degrees of freedom of the
system. If we are interested in the average of a function
of few variables we have that the distribution function,
projected on the subspace of these variables, becomes
more and more “regular” as one increases the number of
degrees of freedom. Thus, we think that the increase of
the number of degrees of freedom has the desirable effect
of actually making the coarse grained distribution virtu-
ally equivalent to the Liouville density, resulting in an
unlimited regime of validity for the Kubo LRT.
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